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Inverse	function	of	exponential	function

Class	of	specific	mathematical	functions	This	article	is	about	the	function	f(x)	=	ex	and	its	generalizations	of	the	form	f(x)	=	abx.	For	functions	of	the	form	f(x,y)	=	xy,	see	Exponentiation.	For	functions	of	the	form	f(x)	=	xr,	see	Power	function.	The	natural	exponential	function	y	=	ex	Exponential	functions	with	bases	2	and	1/2	This	article's	lead	section
may	be	too	long	for	the	length	of	the	article.	Please	help	by	moving	some	material	from	it	into	the	body	of	the	article.	Please	read	the	layout	guide	and	lead	section	guidelines	to	ensure	the	section	will	still	be	inclusive	of	all	essential	details.	Please	discuss	this	issue	on	the	article's	talk	page.	(June	2021)	In	mathematics,	the	exponential	function	is	the
function	f	(	x	)	=	e	x	,	{\displaystyle	f(x)=e^{x},}	where	e	=	2.71828...	is	Euler's	constant.	More	generally,	an	exponential	function	is	a	function	of	the	form	f	(	x	)	=	a	b	x	,	{\displaystyle	f(x)=ab^{x},}	where	b	is	a	positive	real	number,	and	the	argument	x	occurs	as	an	exponent.	For	real	numbers	c	and	d,	a	function	of	the	form	f	(	x	)	=	a	b	c	x	+	d
{\displaystyle	f(x)=ab^{cx+d}}	is	also	an	exponential	function,	since	it	can	be	rewritten	as	a	b	c	x	+	d	=	(	a	b	d	)	(	b	c	)	x	.	{\displaystyle	ab^{cx+d}=\left(ab^{d}\right)\left(b^{c}\right)^{x}.}	The	exponential	function	f	(	x	)	=	e	x	{\displaystyle	f(x)=e^{x}}	is	sometimes	called	the	natural	exponential	function	for	distinguishing	it	from	the	other
exponential	functions.	The	study	of	any	exponential	function	can	easily	be	reduced	to	that	of	the	natural	exponential	function,	since	a	b	x	=	a	e	x	ln		b	{\displaystyle	ab^{x}=ae^{x\ln	b}}	As	functions	of	a	real	variable,	exponential	functions	are	uniquely	characterized	by	the	fact	that	the	growth	rate	of	such	a	function	(that	is,	its	derivative)	is	directly
proportional	to	the	value	of	the	function.	The	constant	of	proportionality	of	this	relationship	is	the	natural	logarithm	of	the	base	b:	d	d	x	b	x	=	b	x	log	e		b	.	{\displaystyle	{\frac	{d}{dx}}b^{x}=b^{x}\log	_{e}b.}	For	b	>	1,	the	function	b	x	{\displaystyle	b^{x}}	is	increasing	(as	depicted	for	b	=	e	and	b	=	2),	because	log	e		b	>	0	{\displaystyle	\log
_{e}b>0}	makes	the	derivative	always	positive;	while	for	b	<	1,	the	function	is	decreasing	(as	depicted	for	b	=	1/2);	and	for	b	=	1	the	function	is	constant.	The	constant	e	=	2.71828...	is	the	unique	base	for	which	the	constant	of	proportionality	is	1,	so	that	the	function	is	its	own	derivative:	d	d	x	e	x	=	e	x	log	e		e	=	e	x	.	{\displaystyle	{\frac	{d}
{dx}}e^{x}=e^{x}\log	_{e}e=e^{x}.}	This	function,	also	denoted	as	exp	x,	is	called	the	"natural	exponential	function",[1][2][3]	or	simply	"the	exponential	function".	Since	any	exponential	function	can	be	written	in	terms	of	the	natural	exponential	as	b	x	=	e	x	log	e		b	{\displaystyle	b^{x}=e^{x\log	_{e}b}}	,	it	is	computationally	and	conceptually
convenient	to	reduce	the	study	of	exponential	functions	to	this	particular	one.	The	natural	exponential	is	hence	denoted	by	x	↦	e	x	{\displaystyle	x\mapsto	e^{x}}	or	x	↦	exp		x	.	{\displaystyle	x\mapsto	\exp	x.}	The	former	notation	is	commonly	used	for	simpler	exponents,	while	the	latter	is	preferred	when	the	exponent	is	a	complicated	expression.	The
graph	of	y	=	e	x	{\displaystyle	y=e^{x}}	is	upward-sloping,	and	increases	faster	as	x	increases.[4]	The	graph	always	lies	above	the	x-axis,	but	becomes	arbitrarily	close	to	it	for	large	negative	x;	thus,	the	x-axis	is	a	horizontal	asymptote.	The	equation	d	d	x	e	x	=	e	x	{\displaystyle	{\tfrac	{d}{dx}}e^{x}=e^{x}}	means	that	the	slope	of	the	tangent	to
the	graph	at	each	point	is	equal	to	its	y-coordinate	at	that	point.	Its	inverse	function	is	the	natural	logarithm,	denoted	log	,	{\displaystyle	\log	,}	[nb	1]	ln	,	{\displaystyle	\ln	,}	[nb	2]	or	log	e	;	{\displaystyle	\log	_{e};}	because	of	this,	some	old	texts[5]	refer	to	the	exponential	function	as	the	antilogarithm.	The	exponential	function	satisfies	the
fundamental	multiplicative	identity	(which	can	be	extended	to	complex-valued	exponents	as	well):	e	x	+	y	=	e	x	e	y		for	all		x	,	y	∈	R	.	{\displaystyle	e^{x+y}=e^{x}e^{y}{\text{	for	all	}}x,y\in	\mathbb	{R}	.}	It	can	be	shown	that	every	continuous,	nonzero	solution	of	the	functional	equation	f	(	x	+	y	)	=	f	(	x	)	f	(	y	)	{\displaystyle	f(x+y)=f(x)f(y)}	is	an
exponential	function,	f	:	R	→	R	,			x	↦	b	x	,	{\displaystyle	f:\mathbb	{R}	\to	\mathbb	{R}	,\	x\mapsto	b^{x},}	with	b	≠	0.	{\displaystyle	beq	0.}	The	multiplicative	identity,	along	with	the	definition	e	=	e	1	{\displaystyle	e=e^{1}}	,	shows	that	e	n	=	e	×	⋯	×	e		n		factors	{\displaystyle	e^{n}=\underbrace	{e\times	\cdots	\times	e}	_{n{\text{	factors}}}}
for	positive	integers	n,	relating	the	exponential	function	to	the	elementary	notion	of	exponentiation.	The	argument	of	the	exponential	function	can	be	any	real	or	complex	number,	or	even	an	entirely	different	kind	of	mathematical	object	(for	example,	a	square	matrix).	The	ubiquitous	occurrence	of	the	exponential	function	in	pure	and	applied
mathematics	has	led	mathematician	W.	Rudin	to	opine	that	the	exponential	function	is	"the	most	important	function	in	mathematics".[6]	In	applied	settings,	exponential	functions	model	a	relationship	in	which	a	constant	change	in	the	independent	variable	gives	the	same	proportional	change	(that	is,	percentage	increase	or	decrease)	in	the	dependent
variable.	This	occurs	widely	in	the	natural	and	social	sciences,	as	in	a	self-reproducing	population,	a	fund	accruing	compound	interest,	or	a	growing	body	of	manufacturing	expertise.	Thus,	the	exponential	function	also	appears	in	a	variety	of	contexts	within	physics,	chemistry,	engineering,	mathematical	biology,	and	economics.	Part	of	a	series	of
articles	on	themathematical	constant	e	Properties	Natural	logarithm	Exponential	function	Applications	compound	interest	Euler's	identity	Euler's	formula	half-lives	exponential	growth	and	decay	Defining	e	proof	that	e	is	irrational	representations	of	e	Lindemann–Weierstrass	theorem	People	John	Napier	Leonhard	Euler	Related	topics	Schanuel's
conjecture	vte	Formal	definition	Main	article:	Characterizations	of	the	exponential	function	The	exponential	function	(in	blue),	and	the	sum	of	the	first	n	+	1	terms	of	its	power	series	(in	red).	The	real	exponential	function	exp	:	R	→	R	{\displaystyle	\exp	\colon	\mathbb	{R}	\to	\mathbb	{R}	}	can	be	characterized	in	a	variety	of	equivalent	ways.	It	is
commonly	defined	by	the	following	power	series:[6][7]	exp		x	:=	∑	k	=	0	∞	x	k	k	!	=	1	+	x	+	x	2	2	+	x	3	6	+	x	4	24	+	⋯	{\displaystyle	\exp	x:=\sum	_{k=0}^{\infty	}{\frac	{x^{k}}{k!}}=1+x+{\frac	{x^{2}}{2}}+{\frac	{x^{3}}{6}}+{\frac	{x^{4}}{24}}+\cdots	}	Since	the	radius	of	convergence	of	this	power	series	is	infinite,	this	definition	is,	in
fact,	applicable	to	all	complex	numbers	z	∈	ℂ	(see	§	Complex	plane	for	the	extension	of	exp		x	{\displaystyle	\exp	x}	to	the	complex	plane).	The	constant	e	can	then	be	defined	as	e	=	exp		1	=	∑	k	=	0	∞	(	1	/	k	!	)	.	{\textstyle	e=\exp	1=\sum	_{k=0}^{\infty	}(1/k!).}	The	term-by-term	differentiation	of	this	power	series	reveals	that	d	d	x	exp		x	=	exp		x
{\displaystyle	{\frac	{d}{dx}}\exp	x=\exp	x}	for	all	real	x,	leading	to	another	common	characterization	of	exp		x	{\displaystyle	\exp	x}	as	the	unique	solution	of	the	differential	equation	y	′	(	x	)	=	y	(	x	)	,	{\displaystyle	y'(x)=y(x),}	satisfying	the	initial	condition	y	(	0	)	=	1.	{\displaystyle	y(0)=1.}	Based	on	this	characterization,	the	chain	rule	shows	that
its	inverse	function,	the	natural	logarithm,	satisfies	d	d	y	log	e		y	=	1	/	y	{\displaystyle	{\frac	{d}{dy}}\log	_{e}y=1/y}	for	y	>	0	,	{\displaystyle	y>0,}	or	log	e		y	=	∫	1	y	1	t	d	t	.	{\textstyle	\log	_{e}y=\int	_{1}^{y}{\frac	{1}{t}}\,dt.}	This	relationship	leads	to	a	less	common	definition	of	the	real	exponential	function	exp		x	{\displaystyle	\exp	x}	as	the
solution	y	{\displaystyle	y}	to	the	equation	x	=	∫	1	y	1	t	d	t	.	{\displaystyle	x=\int	_{1}^{y}{\frac	{1}{t}}\,dt.}	By	way	of	the	binomial	theorem	and	the	power	series	definition,	the	exponential	function	can	also	be	defined	as	the	following	limit:[8][7]	exp		x	=	lim	n	→	∞	(	1	+	x	n	)	n	.	{\displaystyle	\exp	x=\lim	_{n\to	\infty	}\left(1+{\frac	{x}
{n}}\right)^{n}.}	Overview	The	red	curve	is	the	exponential	function.	The	black	horizontal	lines	show	where	it	crosses	the	green	vertical	lines.	The	exponential	function	arises	whenever	a	quantity	grows	or	decays	at	a	rate	proportional	to	its	current	value.	One	such	situation	is	continuously	compounded	interest,	and	in	fact	it	was	this	observation
that	led	Jacob	Bernoulli	in	1683[9]	to	the	number	lim	n	→	∞	(	1	+	1	n	)	n	{\displaystyle	\lim	_{n\to	\infty	}\left(1+{\frac	{1}{n}}\right)^{n}}	now	known	as	e.	Later,	in	1697,	Johann	Bernoulli	studied	the	calculus	of	the	exponential	function.[9]	If	a	principal	amount	of	1	earns	interest	at	an	annual	rate	of	x	compounded	monthly,	then	the	interest	earned
each	month	is	x/12	times	the	current	value,	so	each	month	the	total	value	is	multiplied	by	(1	+	x/12),	and	the	value	at	the	end	of	the	year	is	(1	+	x/12)12.	If	instead	interest	is	compounded	daily,	this	becomes	(1	+	x/365)365.	Letting	the	number	of	time	intervals	per	year	grow	without	bound	leads	to	the	limit	definition	of	the	exponential	function,	exp		x
=	lim	n	→	∞	(	1	+	x	n	)	n	{\displaystyle	\exp	x=\lim	_{n\to	\infty	}\left(1+{\frac	{x}{n}}\right)^{n}}	first	given	by	Leonhard	Euler.[8]	This	is	one	of	a	number	of	characterizations	of	the	exponential	function;	others	involve	series	or	differential	equations.	From	any	of	these	definitions	it	can	be	shown	that	the	exponential	function	obeys	the	basic
exponentiation	identity,	exp		(	x	+	y	)	=	exp		x	⋅	exp		y	{\displaystyle	\exp(x+y)=\exp	x\cdot	\exp	y}	which	justifies	the	notation	ex	for	exp	x.	The	derivative	(rate	of	change)	of	the	exponential	function	is	the	exponential	function	itself.	More	generally,	a	function	with	a	rate	of	change	proportional	to	the	function	itself	(rather	than	equal	to	it)	is	expressible
in	terms	of	the	exponential	function.	This	function	property	leads	to	exponential	growth	or	exponential	decay.	The	exponential	function	extends	to	an	entire	function	on	the	complex	plane.	Euler's	formula	relates	its	values	at	purely	imaginary	arguments	to	trigonometric	functions.	The	exponential	function	also	has	analogues	for	which	the	argument	is
a	matrix,	or	even	an	element	of	a	Banach	algebra	or	a	Lie	algebra.	Derivatives	and	differential	equations	The	derivative	of	the	exponential	function	is	equal	to	the	value	of	the	function.	From	any	point	P	on	the	curve	(blue),	let	a	tangent	line	(red),	and	a	vertical	line	(green)	with	height	h	be	drawn,	forming	a	right	triangle	with	a	base	b	on	the	x-axis.
Since	the	slope	of	the	red	tangent	line	(the	derivative)	at	P	is	equal	to	the	ratio	of	the	triangle's	height	to	the	triangle's	base	(rise	over	run),	and	the	derivative	is	equal	to	the	value	of	the	function,	h	must	be	equal	to	the	ratio	of	h	to	b.	Therefore,	the	base	b	must	always	be	1.	The	importance	of	the	exponential	function	in	mathematics	and	the	sciences
stems	mainly	from	its	property	as	the	unique	function	which	is	equal	to	its	derivative	and	is	equal	to	1	when	x	=	0.	That	is,	d	d	x	e	x	=	e	x	and	e	0	=	1.	{\displaystyle	{\frac	{d}{dx}}e^{x}=e^{x}\quad	{\text{and}}\quad	e^{0}=1.}	Functions	of	the	form	cex	for	constant	c	are	the	only	functions	that	are	equal	to	their	derivative	(by	the	Picard–
Lindelöf	theorem).	Other	ways	of	saying	the	same	thing	include:	The	slope	of	the	graph	at	any	point	is	the	height	of	the	function	at	that	point.	The	rate	of	increase	of	the	function	at	x	is	equal	to	the	value	of	the	function	at	x.	The	function	solves	the	differential	equation	y′	=	y.	exp	is	a	fixed	point	of	derivative	as	a	functional.	If	a	variable's	growth	or
decay	rate	is	proportional	to	its	size—as	is	the	case	in	unlimited	population	growth	(see	Malthusian	catastrophe),	continuously	compounded	interest,	or	radioactive	decay—then	the	variable	can	be	written	as	a	constant	times	an	exponential	function	of	time.	Explicitly	for	any	real	constant	k,	a	function	f:	R	→	R	satisfies	f′	=	kf	if	and	only	if	f(x)	=	cekx	for
some	constant	c.	The	constant	k	is	called	the	decay	constant,	disintegration	constant,[10]	rate	constant,[11]	or	transformation	constant.[12]	Furthermore,	for	any	differentiable	function	f(x),	we	find,	by	the	chain	rule:	d	d	x	e	f	(	x	)	=	f	′	(	x	)	e	f	(	x	)	.	{\displaystyle	{\frac	{d}{dx}}e^{f(x)}=f'(x)e^{f(x)}.}	Continued	fractions	for	ex	A	continued	fraction
for	ex	can	be	obtained	via	an	identity	of	Euler:	e	x	=	1	+	x	1	−	x	x	+	2	−	2	x	x	+	3	−	3	x	x	+	4	−	⋱	{\displaystyle	e^{x}=1+{\cfrac	{x}{1-{\cfrac	{x}{x+2-{\cfrac	{2x}{x+3-{\cfrac	{3x}{x+4-\ddots	}}}}}}}}}	The	following	generalized	continued	fraction	for	ez	converges	more	quickly:[13]	e	z	=	1	+	2	z	2	−	z	+	z	2	6	+	z	2	10	+	z	2	14	+	⋱
{\displaystyle	e^{z}=1+{\cfrac	{2z}{2-z+{\cfrac	{z^{2}}{6+{\cfrac	{z^{2}}{10+{\cfrac	{z^{2}}{14+\ddots	}}}}}}}}}	or,	by	applying	the	substitution	z	=	x/y:	e	x	y	=	1	+	2	x	2	y	−	x	+	x	2	6	y	+	x	2	10	y	+	x	2	14	y	+	⋱	{\displaystyle	e^{\frac	{x}{y}}=1+{\cfrac	{2x}{2y-x+{\cfrac	{x^{2}}{6y+{\cfrac	{x^{2}}{10y+{\cfrac	{x^{2}}
{14y+\ddots	}}}}}}}}}	with	a	special	case	for	z	=	2:	e	2	=	1	+	4	0	+	2	2	6	+	2	2	10	+	2	2	14	+	⋱	=	7	+	2	5	+	1	7	+	1	9	+	1	11	+	⋱	{\displaystyle	e^{2}=1+{\cfrac	{4}{0+{\cfrac	{2^{2}}{6+{\cfrac	{2^{2}}{10+{\cfrac	{2^{2}}{14+\ddots	\,}}}}}}}}=7+{\cfrac	{2}{5+{\cfrac	{1}{7+{\cfrac	{1}{9+{\cfrac	{1}{11+\ddots	\,}}}}}}}}}	This
formula	also	converges,	though	more	slowly,	for	z	>	2.	For	example:	e	3	=	1	+	6	−	1	+	3	2	6	+	3	2	10	+	3	2	14	+	⋱	=	13	+	54	7	+	9	14	+	9	18	+	9	22	+	⋱	{\displaystyle	e^{3}=1+{\cfrac	{6}{-1+{\cfrac	{3^{2}}{6+{\cfrac	{3^{2}}{10+{\cfrac	{3^{2}}{14+\ddots	\,}}}}}}}}=13+{\cfrac	{54}{7+{\cfrac	{9}{14+{\cfrac	{9}{18+{\cfrac	{9}
{22+\ddots	\,}}}}}}}}}	Complex	plane	Exponential	function	on	the	complex	plane.	The	transition	from	dark	to	light	colors	shows	that	the	magnitude	of	the	exponential	function	is	increasing	to	the	right.	The	periodic	horizontal	bands	indicate	that	the	exponential	function	is	periodic	in	the	imaginary	part	of	its	argument.	As	in	the	real	case,	the
exponential	function	can	be	defined	on	the	complex	plane	in	several	equivalent	forms.	The	most	common	definition	of	the	complex	exponential	function	parallels	the	power	series	definition	for	real	arguments,	where	the	real	variable	is	replaced	by	a	complex	one:	exp		z	:=	∑	k	=	0	∞	z	k	k	!	{\displaystyle	\exp	z:=\sum	_{k=0}^{\infty	}{\frac	{z^{k}}
{k!}}}	Alternatively,	the	complex	exponential	function	may	defined	by	modelling	the	limit	definition	for	real	arguments,	but	with	the	real	variable	replaced	by	a	complex	one:	exp		z	:=	lim	n	→	∞	(	1	+	z	n	)	n	{\displaystyle	\exp	z:=\lim	_{n\to	\infty	}\left(1+{\frac	{z}{n}}\right)^{n}}	For	the	power	series	definition,	term-wise	multiplication	of	two
copies	of	this	power	series	in	the	Cauchy	sense,	permitted	by	Mertens'	theorem,	shows	that	the	defining	multiplicative	property	of	exponential	functions	continues	to	hold	for	all	complex	arguments:	exp		(	w	+	z	)	=	exp		w	exp		z		for	all		w	,	z	∈	C	{\displaystyle	\exp(w+z)=\exp	w\exp	z{\text{	for	all	}}w,z\in	\mathbb	{C}	}	The	definition	of	the	complex
exponential	function	in	turn	leads	to	the	appropriate	definitions	extending	the	trigonometric	functions	to	complex	arguments.	In	particular,	when	z	=	it	(t	real),	the	series	definition	yields	the	expansion	exp		(	i	t	)	=	(	1	−	t	2	2	!	+	t	4	4	!	−	t	6	6	!	+	⋯	)	+	i	(	t	−	t	3	3	!	+	t	5	5	!	−	t	7	7	!	+	⋯	)	.	{\displaystyle	\exp(it)=\left(1-{\frac	{t^{2}}{2!}}+{\frac
{t^{4}}{4!}}-{\frac	{t^{6}}{6!}}+\cdots	\right)+i\left(t-{\frac	{t^{3}}{3!}}+{\frac	{t^{5}}{5!}}-{\frac	{t^{7}}{7!}}+\cdots	\right).}	In	this	expansion,	the	rearrangement	of	the	terms	into	real	and	imaginary	parts	is	justified	by	the	absolute	convergence	of	the	series.	The	real	and	imaginary	parts	of	the	above	expression	in	fact	correspond	to
the	series	expansions	of	cos	t	and	sin	t,	respectively.	This	correspondence	provides	motivation	for	defining	cosine	and	sine	for	all	complex	arguments	in	terms	of	exp		(	±	i	z	)	{\displaystyle	\exp(\pm	iz)}	and	the	equivalent	power	series:[14]	cos		z	:=	exp		(	i	z	)	+	exp		(	−	i	z	)	2	=	∑	k	=	0	∞	(	−	1	)	k	z	2	k	(	2	k	)	!	,	and	sin		z	:=	exp		(	i	z	)	−	exp		(	−	i	z	)	2	i
=	∑	k	=	0	∞	(	−	1	)	k	z	2	k	+	1	(	2	k	+	1	)	!	for	all		z	∈	C	.	{\displaystyle	{\begin{aligned}\cos	z&:={\frac	{\exp(iz)+\exp(-iz)}{2}}=\sum	_{k=0}^{\infty	}(-1)^{k}{\frac	{z^{2k}}{(2k)!}},\quad	{\text{and}}\\\sin	z&:={\frac	{\exp(iz)-\exp(-iz)}{2i}}=\sum	_{k=0}^{\infty	}(-1)^{k}{\frac	{z^{2k+1}}{(2k+1)!}}\end{aligned}}{\text{for	all	}}z\in
\mathbb	{C}	.}	The	functions	exp,	cos,	and	sin	so	defined	have	infinite	radii	of	convergence	by	the	ratio	test	and	are	therefore	entire	functions	(that	is,	holomorphic	on	C	{\displaystyle	\mathbb	{C}	}	).	The	range	of	the	exponential	function	is	C	∖	{	0	}	{\displaystyle	\mathbb	{C}	\setminus	\{0\}}	,	while	the	ranges	of	the	complex	sine	and	cosine
functions	are	both	C	{\displaystyle	\mathbb	{C}	}	in	its	entirety,	in	accord	with	Picard's	theorem,	which	asserts	that	the	range	of	a	nonconstant	entire	function	is	either	all	of	C	{\displaystyle	\mathbb	{C}	}	,	or	C	{\displaystyle	\mathbb	{C}	}	excluding	one	lacunary	value.	These	definitions	for	the	exponential	and	trigonometric	functions	lead	trivially
to	Euler's	formula:	exp		(	i	z	)	=	cos		z	+	i	sin		z		for	all		z	∈	C	{\displaystyle	\exp(iz)=\cos	z+i\sin	z{\text{	for	all	}}z\in	\mathbb	{C}	}	.	We	could	alternatively	define	the	complex	exponential	function	based	on	this	relationship.	If	z	=	x	+	iy,	where	x	and	y	are	both	real,	then	we	could	define	its	exponential	as	exp		z	=	exp		(	x	+	i	y	)	:=	(	exp		x	)	(	cos		y	+
i	sin		y	)	{\displaystyle	\exp	z=\exp(x+iy):=(\exp	x)(\cos	y+i\sin	y)}	where	exp,	cos,	and	sin	on	the	right-hand	side	of	the	definition	sign	are	to	be	interpreted	as	functions	of	a	real	variable,	previously	defined	by	other	means.[15]	For	t	∈	R	{\displaystyle	t\in	\mathbb	{R}	}	,	the	relationship	exp		(	i	t	)	¯	=	exp		(	−	i	t	)	{\displaystyle	{\overline
{\exp(it)}}=\exp(-it)}	holds,	so	that	|	exp		(	i	t	)	|	=	1	{\displaystyle	|\exp(it)|=1}	for	real	t	{\displaystyle	t}	and	t	↦	exp		(	i	t	)	{\displaystyle	t\mapsto	\exp(it)}	maps	the	real	line	(mod	2π)	to	the	unit	circle	in	the	complex	plane.	Moreover,	going	from	t	=	0	{\displaystyle	t=0}	to	t	=	t	0	{\displaystyle	t=t_{0}}	,	the	curve	defined	by	γ	(	t	)	=	exp		(	i	t	)
{\displaystyle	\gamma	(t)=\exp(it)}	traces	a	segment	of	the	unit	circle	of	length	∫	0	t	0	|	γ	′	(	t	)	|	d	t	=	∫	0	t	0	|	i	exp		(	i	t	)	|	d	t	=	t	0	{\displaystyle	\int	_{0}^{t_{0}}|\gamma	'(t)|dt=\int	_{0}^{t_{0}}|i\exp(it)|dt=t_{0}}	,	starting	from	z	=	1	in	the	complex	plane	and	going	counterclockwise.	Based	on	these	observations	and	the	fact	that	the	measure	of
an	angle	in	radians	is	the	arc	length	on	the	unit	circle	subtended	by	the	angle,	it	is	easy	to	see	that,	restricted	to	real	arguments,	the	sine	and	cosine	functions	as	defined	above	coincide	with	the	sine	and	cosine	functions	as	introduced	in	elementary	mathematics	via	geometric	notions.	The	complex	exponential	function	is	periodic	with	period	2πi	and
exp		(	z	+	2	π	i	k	)	=	exp		z	{\displaystyle	\exp(z+2\pi	ik)=\exp	z}	holds	for	all	z	∈	C	,	k	∈	Z	{\displaystyle	z\in	\mathbb	{C}	,k\in	\mathbb	{Z}	}	.	When	its	domain	is	extended	from	the	real	line	to	the	complex	plane,	the	exponential	function	retains	the	following	properties:	e	z	+	w	=	e	z	e	w	e	0	=	1	e	z	≠	0	d	d	z	e	z	=	e	z	(	e	z	)	n	=	e	n	z	,	n	∈	Z		for	all		w
,	z	∈	C	{\displaystyle	{\begin{aligned}e^{z+w}=e^{z}e^{w}\,\\e^{0}=1\,\\e^{z}eq	0\\{\tfrac	{d}{dz}}e^{z}=e^{z}\\\left(e^{z}\right)^{n}=e^{nz},n\in	\mathbb	{Z}	\end{aligned}}{\text{	for	all	}}w,z\in	\mathbb	{C}	}	.	Extending	the	natural	logarithm	to	complex	arguments	yields	the	complex	logarithm	log	z,	which	is	a	multivalued	function.
We	can	then	define	a	more	general	exponentiation:	z	w	=	e	w	log		z	{\displaystyle	z^{w}=e^{w\log	z}}	for	all	complex	numbers	z	and	w.	This	is	also	a	multivalued	function,	even	when	z	is	real.	This	distinction	is	problematic,	as	the	multivalued	functions	log	z	and	zw	are	easily	confused	with	their	single-valued	equivalents	when	substituting	a	real
number	for	z.	The	rule	about	multiplying	exponents	for	the	case	of	positive	real	numbers	must	be	modified	in	a	multivalued	context:	(ez)w	≠	ezw,	but	rather	(ez)w	=	e(z	+	2niπ)w	multivalued	over	integers	n	See	failure	of	power	and	logarithm	identities	for	more	about	problems	with	combining	powers.	The	exponential	function	maps	any	line	in	the
complex	plane	to	a	logarithmic	spiral	in	the	complex	plane	with	the	center	at	the	origin.	Two	special	cases	exist:	when	the	original	line	is	parallel	to	the	real	axis,	the	resulting	spiral	never	closes	in	on	itself;	when	the	original	line	is	parallel	to	the	imaginary	axis,	the	resulting	spiral	is	a	circle	of	some	radius.	3D-Plots	of	Real	Part,	Imaginary	Part,	and
Modulus	of	the	exponential	function	z	=	Re(ex	+	iy)	z	=	Im(ex	+	iy)	z	=	|ex	+	iy|	Considering	the	complex	exponential	function	as	a	function	involving	four	real	variables:	v	+	i	w	=	exp		(	x	+	i	y	)	{\displaystyle	v+iw=\exp(x+iy)}	the	graph	of	the	exponential	function	is	a	two-dimensional	surface	curving	through	four	dimensions.	Starting	with	a	color-
coded	portion	of	the	x	y	{\displaystyle	xy}	domain,	the	following	are	depictions	of	the	graph	as	variously	projected	into	two	or	three	dimensions.	Graphs	of	the	complex	exponential	function	Checker	board	key:	x	>	0	:	green	{\displaystyle	x>0:\;{\text{green}}}	x	<	0	:	red	{\displaystyle	x	0	:	yellow	{\displaystyle	y>0:\;{\text{yellow}}}	y	<	0	:	blue
{\displaystyle	y
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